

Intent

Maths at Hyde Park Schools is designed to be an inclusive subject where all children feel safe, empowered to learn, and suitably challenged. Our intention is to build upon the children's learning from EYFS through to Key Stage Two and prepare all our children for the next phase of their mathematical journey in secondary school.

We have designed our Maths curriculum to provide the best learning opportunities for all our children and allow them to expand their curiosity. The curriculum we deliver is aligned to the National Curriculum and incorporates the models and ideas of teaching Maths for mastery, whilst incorporating Programmes of Studies that meet the needs of our children as identified by staff. These include recognising barriers to learning for children who are disadvantaged or face adverse childhood experiences as well as developing skills that enable children to progress their knowledge and use maths to solve problems. Our Maths curriculum is ambitious and designed to give all learners the knowledge and cultural capital they need to succeed in life.

The Maths curriculum is coherently planned and sequenced to provide our learners with a steady progression of the knowledge and skills needed for future learning and the next phase in their education. We understand that a child's ability to learn is based on gaining knowledge and building on prior knowledge, as well as the ability to use and apply any embedded skills adeptly and competently.

Our Maths curriculum is designed to marry key components such as number facts and mathematical thinking to ensure progress and a greater depth of understanding that leads to mastery and fluency. We ensure that children receive a broad and balanced curriculum, and that learning is relevant, exciting, aspirational, and challenging. We know that numerical competency is vital in all learning and increases children's life chances. Which enables them to have more control over their future lives and use Maths in a real-life context.

The children are encouraged to believe in themselves as mathematicians. We have the same ambitions for all learners and believe that they can all attain a good level of mathematical fluency. The curriculum is designed to be inspiring across the school and this allows children to take control of their own learning journey. This is achieved through careful consideration of individual needs, and, in some cases, individual programmes of study based around the needs of the children.

All learners study the full Maths curriculum, which is broad and balanced, and which aims to provide our children with a wide range of experiences. We have further enhanced our programme using the school's core values which are 'lived' daily through our relationships and school ethos.

Implementation

High quality CPD based on research and learning from best practise gives all teachers and teaching assistants the ability to implement the curriculum fully. The Maths co-ordinators from both schools regularly run staff training and monitoring to ensure that the curriculum is skilfully delivered with the greatest impact. The Maths co-ordinator receives training from the NCETM CODE Maths Hub through regular work groups as well as engaging in additional NCETM training and research projects.

Vocabulary is taught explicitly and effectively in Maths and displayed in the classroom. Learning is made accessible to all, by clear coverage of prior knowledge and learning and, within each lesson, consistent scaffolding, clear presentation of new learning, opportunities to share ideas and strategies and timely feedback. Manipulatives and visual representations are used to expose the structure of the Mathematics being taught and identify patterns and links within different areas of Maths. Opportunities for depth are provided through questioning and reasoning when teaching. This can be during whole class teaching or as an additional task in a Maths lesson.

Formative assessment is used routinely within lessons, to address children's misconceptions. Summative assessments are used at the end of a block of work and termly to track how pupils are progressing against the curriculum. Lessons allow pupils to practise our core values within their learning being brave, curious, optimistic, kind, inclusive, enterprising, and confident learners.

The curriculum provides children with deep learning experiences that are successively built on across the years, providing children with a sequential understanding of how maths ideas develop with understanding. Repetition also plays an important role in securing knowledge and fluency. Therefore, knowledge is often revisited in successive years to allow knowledge to become sticky. There is also repetition within in year for the number facts and previously taught strategies. The curriculum provides diverse and rich opportunities from which children can learn and develop a range of transferable skills, such as in data handling and science. Opportunities are given to show Maths in a real-life context which enables the children to Maths as a skill for life.

Tompact

Pupils leave Hyde Park Schools with a secure mastery of mathematical concepts and a fluency of number facts. Through the skills that they have learnt they can apply this knowledge to real life situations. Additionally, they can use Maths to aid their learning and make links in other curriculum subjects They enjoy Maths and are able to use it to improve their adult lives.

We aim for all our children to leave Hyde Park Schools; brave, curious, optimistic, kind, enterprising, inclusive and confident Mathematicians, with the motivation and passion to continue to learn and empowered and enabled to make the most of their lives.

EYFS Progression

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Key facts	Recognise make and find all numbers up to 5 including written as numbers		Recognise and find all numbers up to 10 written as numbers Know number bonds to 5		Recognise make and find all numbers up to 10 written as numbers Recall doubles up to 5+5	
Strand	Number (Getting to know you, baseline assessments \& Just like me)	Number Measure, shape, and spatial thinking. (It's me 123 \& Light and dark \& Alive in 5)	Number Measure, shape, and spatial thinking. Time (Growing 6,7,8)	Number Measure, shape, and spatial thinking. pattern To 20 and beyond)	Number Measure, shape, and spatial thinking. (To 20 and beyond \& First then now)	Number Measure, shape, and spatial thinking. (Find my pattern \& On the move)
Vocabulary	Number Count, order, many, Amount, quantity, most, more, few, fewer, equal, repeat, first, second, third, fourth, fifth, add, take away, altogether, more than, fewer than, whole, part Measure heavy, light, heavier, lighter, full, empty, half full, nearly full, nearly empty, capacity. mass, holds, Shape pattern, sort, copy, continue, repeated pattern, mistake. position, under, over,	Number Represent, show, record, compare, more, most, few, fewer, part, whole, first, one less, one more, Shape circle, triangle, curved, straight, side, corner 2D Measure Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday, day, night, sort, group. sequence, day, night.	Number Zero, quantity, addition, subtraction, add, adding, subtracting, take away, compose, part, whole, altogether, Measure time, week, month January, February, March, April, May, June, July, August, September, October, November, December, height, tall, short, tallest, shortest, length, long, short, longest, shortest	Number Number bond, number pair, teens, Tens, 10s, ones, 1 s , representation, predict, tens frame, match. Shape 2D, circle, square, rectangle, hexagon, 3D, sphere, pyramid, cylinder, cube, cuboid.	Number Add, adding, subtract, subtracting, take away, altogether, first, then, now, missing number, unknown, double, even, odd, group, share, equal, fair.	Review/consolidate understanding of and use of previously taught vocabulary.

Year 1 Progression

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Key facts	To rapidly recall number bonds for each number to 10. To know the number bonds to $20(13+7=20)$. To read numbers to 20 in numbers and words.		To read and write numbers to 20 in numbers and words. To count on and back to 50 . To read numbers to 50 in numerals and words.		To read and write numbers to 50 in numbers and words. To count on and back to 100 . To read numbers to 100 in numerals and words. To rapidly recall the number bonds to 20 .	
Strand	Place Value	Subtraction within 10	Addition and subtraction within 20	Place Value to 50	Multiplication and Division	Time

Vocabulary	Count, sort, group, number sentences, expression, fewer, greater, equal, less than, more than, equal, $\langle,=,>$, fewest, smallest, greatest, representation, prove, check.	subtract, take away equals, number sentence, expression, part-whole, less, difference.	Add, subtract, equals, number sentence, expression, partwhole, more, difference, commutative, tens frame, tens ones.	Count, sort, group, number sentences, expression, fewer, greater, equal, less than, more than, equal, <, =, >, fewest, smallest, greatest, representation, prove, check.	Multiply, pair, twice, equal, unequal, repeated addition, array, row, column.	Day, week, month, January, February, March, April, May, June, July, August, September, October, November, December, first, then, next, morning, evening.
Skills and knowledge	- To count, read and write, forwards and backwards numbers to 10 independently with the correct spelling and formation. - To know One more one less and write as a mathematical expression. - To compare numbers using < = $>$ in an expression. - To know how to put numbers on a number line and use it to order numbers. - To compare and order number independently.	- To use a part whole model to explain mathematical expressions (number sentences). - To write and solve mathematical expressions using and $=$. - To rapidly recall number bonds to 10 and begin to use this knowledge to solve calculations. - To using drawings to calculate subtraction problems (crossing out) - To use counting back to solve subtraction calculations (number line). - To know and use the subtraction fact	- To understand the commutative nature of addition (including greatest number first). - To solve worded problems using First then now structure for numbers to 20. - To add numbers together using drawings, tens frames, counting on and number line. - To find and make number bonds (number splits) to support addition. - To add by making ten. - To know that subtraction is not commutative. - To solve worded problems using First then now structure for numbers to 20.	- To count, read and write, forwards and backwards numbers to 50 independently with the correct spelling and formation. - To count in 2 s to 30. - To count in tens to 50 . - To understand and use tens and ones to explain the structure of 2-digit numbers for numbers to 50. - To place numbers up to 50 on a number line. - To know and use one more and one less than	- To count fluently in $2 s, 5 s$, and tens. - To make and add equal groups. - To use repeated addition to solve problems. - To understand and use array to solve problems. - To use grouping and sharing to solve problems. - To know doubles up to $10+10$.	- To sequence events across a day. - To know and order the days of the week. - To solve problems using their knowledge of the days of the week. - To know and sequence the months of the year. - To tell the time to the hour and half hour. - To understand hours minutes and seconds, including how these relate to each other.

		families for numbers up to 10 . - To be able to write the addition and subtraction fact families for numbers up to 10. - To be able to work out how many more.	- To subtract numbers using drawings, tens frames, counting on and number line. - To find and make number bonds to help subtraction (number splits). - To know when to use addition or subtraction to solve a worded problem.	numbers up to 50. - To compare numbers using < = $>$ in an expression. - To order numbers to 50 independently.	- To use knowledge of doubles to solve problems. - To use a number line to solve problems.	
Strand	Addition within 10.	Place Value to 20	Place Value to 50	Measurement (Length and height)	Fractions	Place Value to 100
Vocabulary	Add, equals, number sentence, expression, part-whole, more,	Count, sort, group, number sentences, expression, fewer, greater, equal, less than, more than, equal, $<,=$, >, fewest, smallest, greatest, representation, prove, check	Count, sort, group, number sentences, expression, fewer, greater, equal, less than, more than, equal, <, =, >, fewest, smallest, greatest, representation, prove, check	Compare, long, length, tall, height, measure, centimetre, cm, accurate	Whole, half, quarter, fraction, equal	Count, sort, group, number sentences, expression, fewer, greater, equal, less than, more than, equal, <, =, >, fewest, smallest, greatest, representation, prove, check
Skills and Knowledge	- To use a part whole model to explain mathematical expressions (number sentences). - To write and solve mathematical expressions using + and $=$. - To know and use addition fact families for	- To count, read and write, forwards and backwards numbers to 20 independently with the correct spelling and formation. - To count in 2 s to 20. - To understand and use tens and ones to explain the structure of 2-digit numbers.	- To count, read and write, forwards and backwards numbers to 50 independently with the correct spelling and formation. - To count in 2 s to 30 . - To count in tens to 50. - To understand and use tens and ones to explain the structure of 2-digit numbers for numbers to 50 .	- To compare heights and lengths of 3 objects. - To measure objects using non-standard measurements. - To measure objects using standard measurements (cm). - To solve simple practical	- To understand that a half is one of two equal parts. - To understand that a quarter is one of four equal parts.	- To count forwards and backwards to 100. - To count forwards and backwards starting at different points within 100. - To know one more and one less for numbers within 100. - To put numbers up to 100 on a blank number

	numbers up to 10. - To rapidly recall number bonds to 10 and begin to use this knowledge to solve calculations. - To use drawings to support addition calculations. - To add to numbers together. - To be able to work out how many more.	- To place numbers up to 20 on a number line. - To know and use one more and one less than numbers up to 20 . - To compare numbers using < = > in an expression. - To order numbers to 20 independently.	- To place numbers up to 50 on a number line. - To know and use one more and one less than numbers up to 50. - To compare numbers using < = > in an expression. - To order numbers to 50 independently.	problems for measurement (order heights and lengths) - To solve simple worded problems for measurement.	- To find a fraction of a shape. - To find a fraction of an amount. - To find a quarter of a shape. - To find a quarter of an amount. - To solve simple reasoning problems using their knowledge of half and quarter.	line, relative to each other and 100. - To use tens and ones as well as a place value grid to expose the structure of numbers up to 100. - To partition numbers using a variety of representations. - To compare numbers. - To order 3 numbers.
Strand		Shape		Measurement (mass and volume)	Time	Money
Vocabulary		Cube, cuboid, cylinder, pyramid, cone, sphere, triangular prism, rectangle, circle, square, triangle, 2D, 2D, curved, flat, face		Compare, weight, mass, heavy, heavier, light lighter, full, half-full, nearly full, empty, measure, capacity, volume	Day, week, month, January, February, March, April, May, June, July, August, September, October, November, December, first, then, next, morning, evening	Pence, pound, coin, note
Skills and knowledge		- Recognise, name and sort 3D shapes. - Describe the faces 3D shapes using	\bullet	- To compare mass and capacity of 3 objects. - To measure objects using	- To sequence events across a day.	- To recognise and order coins. - To recognise and order notes.

		names of 2D shapes. - Solve simple reasoning problems involving shape.		non-standard measurements. - To solve simple practical problems for measurement (order objects by mass/capacity) - To solve simple reasoning problems for measurement.	- To know and order the days of the week. - To solve problems using their knowledge of the days of the week. - To know and sequence the months of the year. - To tell the time to the hour and half hour. - To understand hours minutes and seconds, including how these relate to each other.	- To make given amounts of money. - To make the same amount of money in different ways.
Strand						Position and Direction
Vocabulary						ft, right, forwards, ackwards, half turn, uarter turn, full turn, top, between, bottom,

					above, below, position, direction
Skills and					
knowledge					To know and use left and right, up and down.
					To describe the position of an object relative to
another object.					

Year 2 Progression

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	
Key facts	To independently count in 2s, 5s, and 10s. To rapidly recall and use multiplication and division facts for 2, 5 and 10.		Summer 2			
Strand	Place Value	Money	Statistics	Fractions	Worded problems (Addition and subtraction)	Position and direction
Vocabulary	Count, sort, group, number sentences, expression, fewer, greater, equal, less than,	Coins, notes, pounds, pence, $£$, change, total, amount, difference	Tally, pictogram, block diagram, total, altogether, more, less, difference	Fraction, part, whole, whole, half, quarter, three-quarter, equal	Add, addition, more, total, altogether, remaining, difference	Left, right, half turn, quarter turn, full turn, clockwise anti-clockwise, rotate

	more than, equal, <, =, >, fewest, smallest, greatest, representation, prove, check					
Skills and knowledge	- To count, read and write, forwards and backwards numbers to 100 independently with the correct spelling and formation. - To reliable count objects up to 100 by grouping in tens and ones. - To use a variety of representations to illustrate numbers up to 100 (partwhole, base ten tens frames, straws, bead string, bead bar, numicon) - To quickly partition numbers.	- To recognise coins and notes and understand the value relative to each other. - To make amounts in coins, notes and mixed coins and notes. - To compare amounts including mixed coins and notes. - To add amounts including adding mixed amounts. - To find the difference between amounts. - To calculate change.	- To recognise use and interpret a tally chart. - To recognise use and interpret a pictogram. - To use a scale on a pictogram (where one picture represents either, 2,5 or 10). - To recognise use and interpret a block diagram. - To use a scale on a block diagram (where one block represents either, 2,5 or 10).	- To identify equal parts of a shape. - To recognise and find half of a shape or number (including 2digit numbers). - To recognise and find a quarter of a shape or number (including 2digit numbers). - To recognise and find a third of a shape or number (including 2digit numbers). - To recognise and find three quarters of a	- To use knowledge of addition to solve worded problems including 2 step worded problems. - To use knowledge of subtraction to solve worded problems including 2 step worded problems.	- To describe the position of an object. - To describe the movement of an object (a route). - To understand and use quarter turn, half turn, whole turn clockwise and anti-clockwise. - To solve problems involving turns.

	- To know One more one less of numbers up to 100. - To compare up to 4 numbers using $<=>$ in an expression. - To know how to put numbers up to 100 on a blank number line and use it to order numbers. - To compare and order number independently. - To count in 2 s , 5 s and 10 s independently. - To begin to count in 3 s .	- To calculate change as part of a twostep problem.	- To record data using statistics.	shape or number (including 2digit numbers). - To understand and write unit fractions. - To understand and write nonunit fractions (2/3, 3/4). - To count in fractions - To know that $2 / 4$ is equivalent to 1/2.		
Strand	Addition and subtraction.	Multiplication and Division	Shape	Measurement (Length and height)	Worded problems (Multiplication and Division)	Fractions
Vocabulary	Add, equals, number sentence, expression, part-whole, more,	Multiply, multiple, divide, pair, twice, equal, unequal, array, row, column	2D, 3D, circle, square, rectangle, quadrilateral, pentagon, octagon, cone, cylinder, cube,	Compare, long, length, ,tall, height, measure, centimetre, cm , metre, m, accurate	Multiply, divide, groups of, lots of, altogether, remaining, difference	Whole, half, quarter, three-quarter, third, equal.

			cuboid, sphere, triangular prism, sides, vertices, edges, line of symmetry, faces, curved, flat			
Skills and Knowledge	- To know and use the number bonds to 100 for the multiples of ten. - To rapidly identify and use number splits to support efficient addition and subtraction. - To add a multiple of 10 to a 2-digit number efficiently. - To use a place value grid to add and subtract 2digit numbers, exchanging where necessary. - To use a number line to efficiently add and subtract 2-digit numbers (jumping to the nearest 10 etc). - To solve reasoning and worded	- To independently count in $2 \mathrm{~s}, 5 \mathrm{~s}$, and 10 s . - To count in 3s. - To know multiplication facts for 2, 5 and 10. - To understand and use the x and \div symbols. - To understand arrays and use them to solve problems. - To know that the 2 times table is equivalent to doubling. - To understand the relationship between the 2 times table and odd and even numbers. - To using sharing and grouping to	- To recognise common 2D and 3 D shapes (see vocabulary). - To know the properties of commons 2D and 3D shapes. - To recognise a line of symmetry and be able to draw one. - To sort shapes by their properties. - To make extended repeating patterns including symmetrical ones.	- To compare heights and lengths of 3 objects using metres and centimetres. - To accurately measure objects using standard measurements (m, cm). - To solve problems for measurement (which may use any of the four number operations)	- To use knowledge of multiplication to solve worded problems. - To use knowledge of division to solve worded problems.	- To find a half, quarter, threequarters or a third of numbers up to 50 . - To solve worded problems for fractions.

	problems for addition and subtraction.	solve multiplication and division problems.			
Strand			Measurement (mass, and temperature)	Time	Place Value to 100 (consolidation)
Vocabulary			Compare, weight, mass, heavy, heavier, light lighter, temperature, hot cold, Centigrade, ${ }^{\circ} \mathrm{C}$, degree, scale	Second, minute, hour, 24 hours, am, pm, half past, o'clock, quarter past	Count, sort, group, number sentences, expression, fewer, greater, equal, less than, more than, equal, <, =, >, fewest, smallest, greatest, representation, prove, check
Skills and knowledge			- To measure mass in kilograms and grams. - To compare measurements of mass and order them using standard units. - To choose sensible units to measure the mass of an object. - To solve worded problems using mass (which may use any of the four	- To tell the time to the hour, half hour and quarter past. - To solve problems relating to time in minutes or hours. - To know that there are 24 hours in a day and read a 24hour time. - To write time in minutes and ours with an awareness of am and pm.	- To quickly partition numbers up to 100 using different representations. - To use partitioning numbers to support addition and subtraction of 2-digit to 2digit numbers. - To recall number facts quickly and efficiently. - To add numbers onto a blank number line bridging through 100.

				number operations). - To read a scale which may be calibrated in $1 \mathrm{~s}, 2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$ or 100s.	- To tell time to 5 minutes.	
Strand					urement me and capacity	
Vocab					Compare, volume, capacity, full, half-full, nearly full, empty, measure, millilitres, ml litres, I, scale	
knowl					- To compare the volume of 3 objects using millilitres and litres. - To read a scale which may be calibrated in 1s, $2 s, 5 s, 10$ s or 100s. - To choose sensible units to measure the volume of a fluid. - To accurately measure objects using standard measurements (ml, I).	

						- To solve problems for measurement (which may use any of the four number operations)

Year 3 Progression

Autumn 1	Y3 Place Value and number knowledge to 1000
Prior Learning	Children must know their place value to 100 so add in as an intervention or a review to fill any gaps. They need to know basic place value e.g., there are ten ones in one ten and ten tens in one hundred. They need to be able to count above 100 and read, write, and recognise numbers to 1000. They need to be able to count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s They should know half of 100 is 50 They should know their number bonds to 100 (10s)
Continuous Provision	Time measure and money (previous year groups objectives)
Key Vocabulary	Use the language of unitising for example 70 is 7 tens 170 is one hundred and 7 tens and also 17 tens Ones tens hundreds thousands thousands hundreds tens and ones
Key Facts Skills and Knowledge: Number bonds to $10060+40$ (tens) $63+37$ By the end of the teaching sequence children should...	Examples and models and images to use

Count in 100s to 1000 NCETM 1.18 (

Represent numbers to 1000 and partition numbers to 1000 in a PV chart and part whole model NCETM 1.18
$\mathbf{1 0 0 \mathbf { s }}$
3

	Give children plenty of opportunity to play with this concept using concrete apparatus
Order numbers to Read and write numbers to 1000	

```
0
cccccccccccccccc
```

200			
50	50	50	50

Compare numbers
to 1000
using $<\gg$

	find the difference by adding on. They should know their number bonds to 20 and number bonds to 100 (tens)They should be able				
to estimate an answer e.g., $14+17$ is around $\mathbf{3 0}$		$	$	Continuous Provision	Number bonds within 20 doubles and halves to 20 and beyond adding 3 numbers estimating using the inverse and solve empty box calculations and balancing equations.
:---	:---				
Key Vocabulary	sum, difference, total, difference, altogether, how many more, how many less				
Key Facts	Number bonds to 100 Doubles and halves to 100 and beyond (tens) e.g., $70+70=140$				
Skills and Knowledge:	Examples and models and images to use				
By the end of the					
teaching					
sequence					
children should...					

Add and subtract
multiples of 100

$$
\begin{aligned}
& 2+8=10 \\
& 20+80=100 \\
& 200+\ldots=
\end{aligned}
$$

What do you notice?

Add/subtract ones to/from 3d numbers to hitting multiples of 100 image NCETM

Add/subtract tens
to/from 3d
numbers to hitting
multiples of 100 image NCETM

Add/subtract tens
to/from 3d
numbers crossing
100s
NCETM 1.18

$$
\begin{gathered}
70 \cdot+50=120 \\
\ddots \because \backslash \backslash \\
100 \because 30
\end{gathered}
$$

numbers using ENL
$520+290=810$
$+300$

	 Jumping in hundreds, tens and ones

By the end of the teaching				
sequence				
children should...		\quad	Add 3d numbers using column addition with no exchange	
:---	:---			
Add 3d numbers using column addition with one exchange				

	Eleven ones is exchanged for one ten and one one Images from Year4 Y3 ones to follow
Subtract 3d numbers using column addition with no exchange	

Subtract 3d numbers using column addition with one exchange

There is not enough ones to subtract 6 so exchange one ten for ten ones. Ten ones plus 2 ones is 12 ones. 12 ones subtract 6 ones is 6 ones. Now there is 7 tens not 8 tens. 7 tens subtract 3 tens is 4 tens etc.

Use PV counters once secure with the
concept. Moving to abstract algorithm

Use the inverse to check answers and show calculations as part - whole models	
Be able to solve one step and two step problems in different contexts using addition and subtraction and apply the correct calculation method e.g measure and time reviewed from Y2	Also write 4 calculations that go with the part whole model Images to follow
Autumn 2	Multiplication and Division
Prior Learning	Children should be fluent in their $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s multiplication and division facts They should know that multiplication is commutative, and that division isn't They should understand multiplication as repeated addition Understand multiplication and division as an array Refer to NCETM Y2 PD materials and Dfe Ready to Progress Y1 and Y2 Multiplication and Division
Continuous Provision	All the times tables and using tables (2s, 5s and 10s) in context of money and time (Y2)
Key Vocabulary	Use group size and number of groups 3, 4 times Use the language of dividend \div divisor $=$ quotient factor \mathbf{x} factor $=$ product Understand and use the word multiple Understand and use multiply, divide, groups of, lots of, grouping and sharing (quotitive and partitive division) Use unitising language 30×43 tens, 4 times

Key Facts	2s 5s and 10s times tables 3s 4s and 8s times tables Understand the concept of multiplying by 1 and by 0 Understand the concept of dividing by 1 and itself Use fact triangles to make multiplication and division fact families and extended fact families Make links with doubling and halving
skills and Knowledge: By the end of the teaching sequence children should...	Examples and models and images to use
```Understand the symbols x % and = and the language of factor and product NCETM 2.3 REVIEW```	3 $\times$ 2 $=$ 6   factor $\times$ factor $=$ product6 $=$ 3 $\times$ 2   product $=$ factor $\times$ factor

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Can link the 10 x table with place value NCETM 2.4 REVIEW \& 0

0 \&  \& $$
\begin{gathered}
2 \\
\\
\hline 1 \\
20
\end{gathered}
$$ \& \[

$$
\begin{gathered}
3 \\
\\
\hline 1 \\
30
\end{gathered}
$$

\] \&  \&  \& \[

$$
\begin{gathered}
6 \\
\hline 1 \\
60
\end{gathered}
$$

\] \&  \&  \&  \& \[

$$
\begin{gathered}
10 \\
\hline 100 \\
100
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
11 \\
\hline 110 \\
\hline 1
\end{gathered}
$$
\] \& 12

$$
120
$$ <br>

\hline $5 \times$ table with markings on a clock face NCETM 2.4 REVIEW \& \& | $4=20$ |
| :--- |
| ast |
| as an o | \& ortunit \& to rev \& w time \& om Y2 \& \&  \& \& \& \& \& <br>

\hline
\end{tabular}







Understand the   concept of   multiplying by 1   and by 0   NCETM 2.2


Understand what a
multiple is and
unen you are skip
counting you are
counting in
multiples


Add to the create
the next multiple
and this can be
used to make
calculations easier
NCETM 2.10 and
2.7
Distributive law


Subtract to the
create the previous
multiple and this
can be used to
make calculations
easier NCETM 2.10
and 2.7


Know that halving is   the same as   dividing by 2   NCETM 2.6
Total   number of   children




	0 0 0 0 0   0 0 0 0 0	
Know doubles and halves to 50		
Know that division can be expressed as grouping and sharing NCETM 2.6	Image from WR Y3 use concrete apparatus to make groups of and share out.	Circle the buttons in groups of 4 .   Can you also split the buttons into 4 equal groups? How is this the same? How is it different?
Understand the concept of dividing by 1 and itself		
Be familiar with the language dividend :divisor = quotient NCETM 2.6	30 $\div$ 5 $=$   dividend $\div$ divisor $=$	6   quotient


Know the divisibility
rules for 2 s 4 s and
8 s NCETM 2.7


Investigate with concrete
materials - leads on to
remainders next term.


Spring	Y3 Multiplication and Division
Prior   Learning	Children should now be fluent in their 3s 4s and 8s multiplication and division facts   They should know that multiplication is commutative, and that division isn't   They should understand multiplication as repeated addition   Understand multiplication and division as an array   Understand the concept of multiplying by 1 and by 0   Understand the concept of dividing by 1 and itself   Be able to make some links with doubling and halving
Continuous   Provision	All the times tables now know 2 s 3 s 4 s 5 s 8 s and 10s Plus addition and subtraction skills from previous Autumn Term learning to keep on the boil




method to $\times 2 \mathrm{~d}$ by $1 d$ and discuss which is the most efficient and why $36 \times 2$
(double) $23 \times 4$

- (double then double
again) $15 \times 6$ (
$15 \times 3=45$ so
just double 45 ) $53 \times 8$ (area model)
Understand scaling and how it relates to multiplication $4 \times$ bigger word problems and bar model problems see White Rose

In a playground there are 3 times as many girls as boys.


Which bar model represents the number of boys and girls? Explain your choice.



120			
30	30	30	30

$12 \div 4=3$



Divide 2d by 1d
using
partitioning
into known
multiples of the
divisor.
Use lots of
practice with
dienes. Some
children may
move on to a
jottings version of this once the concept is secure.

Exchange a ten for 12
ones


	Check White Rose Y2	
Continuous Provision	Times tables / addition and subtraction strategies	
Key vocabulary	Pounds pence pennies change value	
Key facts	Money is a good thing to have on the boil and things like counting in 2s 5 s and 10s can be used when reviewing times tables. Decimals are not used in money until Y 4 when it is introduced with tenths and hundredths, but children should be able to convert between pounds Children should be confident in adding and subtracting money using a variety of strategies.   They should be able to solve 2 step problems and give change   They should be able to use the 4 operations in the context of money and links made to multiplication and division.   Links should be made to PV to 100 and 1000.   Part whole models and bar models should be used.	
skills and Knowledge: By the end of the teaching sequence children should...		
Recognise all UK coins and notes	Where possible real money or practise money should be used.	
Know how many pence in a pound		
Know how many 2ps 5ps 10ps 20ps and 50 ps in a pound		



Be able to solve a variety of 1 step and 2 step problems using the 4 operations.	Amir has £4   He buys a pencil for $£ 1$ and 20p and a book for £1 and 45p.
Spring 2	Y3 Fractions
Prior Learning	Children should now be fluent in their 2 s 3 s 4 s 5 s 10 s and 8 s multiplication and division facts.   Know that a fraction is made up of equal parts   Recognise and find halves, quarters, and three-quarters in a variety of contexts   Count in known fractions   Understand equivalence of half and two quarters   Refer to NCETM Y2 PD materials and Dfe Ready to Progress Y1 and Y2 and Y3 Fractions for interventions and prior learning.
Continuous Provision	All times tables now know 2s 3s 4s 5s 8s and 10s Plus addition and subtraction skills from previous Autumn Term learning to keep on the boil
Key   Vocabulary	Equal parts unequal parts numerator denominator whole part Check that children can say, write and spell fractions correctly especially quarters
Key Facts	This is the first formal learning on fractions, and it may be a good year since any fraction learning has been done so please refer to prior learning ar secure first.   Key that fractions are presented in a variety of contexts from shape, amount, measures number lines arrays   Use arrays to make links with multiplication and division   Be able to count in fractions on a number line   Know that when the numerator and denominator are equal then the fraction is a whole
Skills and Knowledge:	Examples and models and images to use

By the end of the teaching sequence children should...


Be able to construct and interpret unit fraction NCETM 3.2 REVIEW	
Understand the language of numerator and denominator NCETM 3.2	


$\square$


Be able to construct and interpret nonunit fractions NCETM 3.3


What does the ' 6 ' represent? What does the '5' represent?
$\qquad$ equal parts. The whole has been divided into equal
of the whole parts are shaded; that is $\qquad$ of the whole.
Know that
when the
numerator and
denominator
are the same
then this is a
whole. That
when you have
all the parts you
have the whole.
NCETM 3.3

Count in
fractions and
plot them on a number line NCETM 3.3

Fold up pieces of paper then draw a number line.
Also shows repeated addition which links to multiplication

$+\frac{1}{5}+\frac{1}{5}+\frac{1}{5}$


$$
\frac{3}{5}=\frac{1}{5}+\frac{1}{5}+\frac{1}{5}
$$




Add and
subtract
fractions with the same denominator within the whole

$\frac{8}{9}-\frac{3}{9}=\frac{5}{9}$


Be able to tell the time on an analogue and digital clock to 5 minutes	What time is shown on each clock? $\qquad$ minutes past $\qquad$ $\qquad$ minutes to $\qquad$   Use real clocks and different types of clocks
Be able to tell the time on an analogue and digital clock to the minute	Draw the hands on the clock from the following times.   Four minutes to 4   24 minutes to 8   24 minutes past 8
Use am and pm	Sort the times from latest to earliest.   5:30 p.m.   9:45 a.m.   9:45 p.m.   10:23 a.m.   7:31 a.m.   10:13 p.m.   8:30 a.m.   6:32 a.m.   12:24 a.m.   8:55 p.m.   2:11 a.m.   7:40 a.m.   also make on real clocks to compare

Use the 24 hour Make a timetable of the day and put in 12 hour and 24 hour clock clock

	Match the times to the clocks showing the same time.
Know how many minutes in an hour/ seconds in a minute	
Count time in seconds	Link to Science
Know how many hours in day/2 days	Complete the statements.




Draw and interpret pictograms	4 classes are recording how manyCass Boitsesd				
	4 classes are recording how many books they read in a week. Here are the results of how many books they read last week.	Cass 1	-		Key
		Cass 2			
		Class 3			$=5$
		$\text { cluss } 4$			
	- Which class read the most books?   - Which class read the least books?   - How many more books did Class 4 read than Class 2?				
Draw and interpret bar charts	Here is a tally chart showing the number of children in each sports club.   Draw a bar chart to represent the data.	Sporn	Tally		Toad
		Footanall	HH HH - HH		15
		Tenis	-HH HH IIII		
		Regby	HHT HH HH	Y III	
		Cincent	HHT HHT II		
		Baskertal	-HH III		
Interpret tables to answer one and two step problems					
	The cost of Ron's new ticket is 60p. How much was his ticket last year? How much has the price			2016	2017
				44p	49p
				56p	60p
	increased by?			64p	69p
				76p	85p
	- Which ticket price has increased the most from			85p	93p
	2016 to 2017? Which ticket pri the least?			98p	$£ 1.03$
				£1.05	£1.11
Summer 1	Y3 Length and perimeter				
Prior Learning	Children will have done a lot of comparing using comparative adjectives and some measuring with cm and m Children will need knowledge of addition and subtraction strategies as well as secure PV knowledge				


Continuous Provision	Addition and subtraction strategies which will help with adding and subtracting lengths Place Value   Review of common 2D shapes will help with perimeter
Key   Vocabulary	Metre centimetre millimetre length height width
Key Facts	Be able to use a ruler correctly Know there are 100 cm in $1 \mathrm{~m} \quad 10 \mathrm{~mm}$ in 1 cm 1000 mm in 1 m That perimeter is the total length of the outside of a 2 D shape
Skills and knowledge By the end of the teaching sequence children should...	Examples and models and images to use
Know how to use a ruler and know what $\mathrm{mm}, \mathrm{cm}$ and m are.	




Can you find more than one way to calculate the perimeter?
Use two different methods to calculate the perimeter of the squares.
5 cm


\section*{| Summer 2 | Y3 Geometry - Properties of Shape |
| :--- | :--- |}

Prior Learning Again, they might not have touched on shape for a while to good to introduce as continuous provision throughout the year- e.g shape of the week or ter they should be familiar with basic 2D shapes.

Continuous	Keep reviewing key arithmetic strategies

Provision $\quad$ Time for use with turns

Key	2D 3D horizontal, vertical, parallel and perpendicular right angle obtuse angle acute angle net names of 2D and 3D shapes

Vocabulary

Key Facts	Main properties of 2D and 3D shapes how to identify different angles

Skills and
knowledge
By the end of
the teaching
sequence
children
should...




Key	Grams kilogrammes millilitres litre


Vocabulary	
Key Facts	$1 \mathrm{~kg}=1000 \mathrm{~g} \mathrm{\quad 1I}=1000 \mathrm{ml}$
Sk	

Skills and
knowledge
By the end of
the teaching
sequence
children
should...



```
Fraction of an
amount
problems - WR
Y3 fractions
Spring
```


## Year 4 Progression

Autu mn 1	Y4 Place Value
Prior Learni ng	Children must know their place value to $\mathbf{1 0 0}$ so add in as an intervention or a review to fill any gaps. They need to know basic place value e.g there are ten ones in one ten and ten tens in one hundred. They need to be able to count above 100 and read, write and recognise numbers to 1000 . They need to be able to count in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s and count in 50 s . They should know half of $\mathbf{1 0 0}$ is $\mathbf{5 0}$ and half of $\mathbf{1 0 0 0}$ is $\mathbf{5 0 0}$. They should know their number bonds to $\mathbf{1 0 0}$ See Dfe Ready to Progress Number and Place Value for Y2 and Y 3 to fill gaps
Contin uous Provisi on	Roman Numerals, Time measure and money (previous year groups) Times tables
Key Vocab ulary	Use the language of unitising for example 70 is 7 tens 170 is one hundred and 7 tens and also 17 tens Ones tens hundreds thousands


Key   Facts	Number bonds to 1000 tens and hundreds e.g. $640+360=1000$	1000 more / less than any number
Skills and Knowle dge:	Examples and models and images to use	
By the end of the teaching sequenc e children should...		








Use a numberline. Mark the next and previous multiple of 10,100 or 1000.
Mark on the middle point. Then round to
the nearest multiple
Do not use 4 to the floor, 5 to the sky



Autu mn 1	Y4 Addition and Subtraction (ENL and mental strategies)
Prior Learning $\qquad$	Children should be able to use ENL strategies for $\mathbf{2}$ and $\mathbf{3}$ digit numbers where appropriate by making the next multiple of $\mathbf{1 0}$ or 100 overjumping or jumping in 10s and 100s. Some children may also be able to adjust calculations to make them easier. They should know that addition is commutative, and subtraction isn't and they should know how to find the difference by adding on. They should be able to estimate an answer e.g $53+48$ is around 100. See Dfe Ready to Progress Number Facts and Addition and Subtraction Y2 and 3 to fill gaps
$\begin{array}{\|l\|l\|l} \hline \text { Continu } & \text { Ic } \\ \text { ous } & \text { n } \\ \text { Provisio } \\ \hline n \\ \hline \end{array}$	Identifying no work, mental and jottings calculations should be part of continuous provision and once children are secure with written methods always provide calculations that don't need a formal method. Empty box calculations, moving the equals sign and balancing equations should also be part of continuous practise and number talk. times tables
Key   Vocabul   ary	Use unitising language such as 5 tens subtract 3 tens equals 2 tens, three hundreds add 4 hundreds equals 7 hundreds. sum, total, difference, total, altogether, how many more, how much less, find the difference, estimate
Key   Facts	Number bonds to 1000 e.g., $640+360=10001000$ more / less than any number
skills   and   Knowle   dge   By the end of the teaching sequenc e children	Examples and models and images to use


should
be able
to...


Add and
subtract
multiples
of 100
and
lo00




| calculatio <br> ns  <br> Autumn Y4 Addition and Subtraction (Written methods) <br> 2 Examples and models and images to use <br> Skills <br> and <br> Knowle <br> dge  <br> By the <br> end of <br> the  <br> teaching <br> sequenc  <br> e <br> children <br> should...  <br> Add 3d <br> numbers <br> using <br> column <br> addition <br> with one <br> exchange  <br> Add 3d <br> numbers <br> using <br> column  |
| :--- | :--- |




| than one <br> exchange |
| :--- | :--- |
| Subtract <br> 4d <br> numbers <br> using <br> column <br> addition <br> with one <br> exchange |


Subtract	There is not enough ones to subtract 6 so
4 d	exchange one ten for ten ones. Ten ones   numbers   using
plus 2 ones is 12 ones. 12 ones subtract 6	
column	
addition	
with	ones is 6 ones. Now there is 7 tens not 8   tens. 7 tens subtract 3 tens is 4 tens etc.   more   than one   exchange
Use PV counters once secure with the   concept. Moving to abstract algorithm	





Autu mn 2	Y4 length and perimeter
Prior Learning	Children should be able to measure with a ruler and know cm and metres and how many cm in a m
Continu ous Provisio n	Calculations should be a mix of ones which need a written method and ones which could be done mentally or with jottings - procedural variation and intelligent practise built in. Times tables
$\begin{aligned} & \text { Key } \\ & \text { Vocabul } \\ & \text { Vry } \end{aligned}$	millimetre centimetres metres kilometres
Key Facts	$1 \mathrm{~cm}=10 \mathrm{~mm} \quad 100 \mathrm{~cm}=1 \mathrm{~m} \quad 1000 \mathrm{~m}=1 \mathrm{~km}$
Skills   and   Knowle   dge   By the   end of   the   teaching   sequenc   e   children   should...	Examples and models and images to use


Know how many metres in a km	Use bar model to review number bonds to 1000
Convert between metres and kilometr es	
Add and subtract lengths	Review addition and subtraction strategies and fractions of amount in $1 / 2 \mathrm{~km}$ etc
Understa nd that perimete r means the outside of a 2D shape	
Find the perimete $r$ of rectilinea r shapes	


Spring   1	Y4 Multiplication and Division
Prior learning	Know all the of the multiplication and division facts for 2 s 5 s 10 s 3 s 4 s 8 s   Understand the concept of multiplying by 1 and by 0   Understand the concept of dividing by 1 and itself   Use fact triangles to make multiplication and division fact families and extended fact families   Understand multiplication as repeated addition   Understand multiplication and division as an array   Understand division as grouping and sharing   Use the distributive law to make calculations easier $7 \times 8$ can be $5 \times 8+2 \times 8$ (use arrays)NCETM 2.10   Understand that multiplication is commutative, but division isn't   See DfE Ready to Progress for Y3 for interventions
$\begin{array}{\|l\|} \hline \text { Continuou } \\ \text { s } \\ \text { Provision } \\ \hline \end{array}$	Times tables facts plus addition and subtraction strategies time measure money (previous year group) Remember to put in for Multiplication Test and start setting up practises for groups.
$\begin{aligned} & \text { Key } \\ & \text { Vocabular } \end{aligned}$ $y$	Use group size and number of groups 3,4 times   Use the language of dividend $\div$ divisor $=$ quotient $\quad$ factor x factor $=$ product   Understand and use the word multiple   Understand and use multiply, divide, groups of, lots of, grouping and sharing (quotitive and partitive division)   Use unitising language $30 \times 43$ tens, 4 times
Key facts	Use the distributive law to make calculations easier $7 \times 8$ can be $5 \times 8+2 \times 8$ (use arrays)NCETM 2.10   Make links with doubling and halving through links with $4 x$ and $8 x$ and $3 x$ and $6 x$ plus doubling and halving factors)   Be able to discuss which methods are efficient and error proof or error prone.   Be able to multiply 3 numbers   Be able to $\times 10 / 100$ and a multiple of $10 / 100$   Use the area model and formal written algorithm of short division   Use multiplication in the context of scaling ( $\mathbf{3}$ times as many, 10 times bigger problems )


Skills and	Examples and models and images to use
Knowledg	
e	
By the end	
of the	
teaching	
sequence	
children	
should...	
Know all   tables to 12	Children should be secure on multiplication tables from Y2 and Y3 already through continuous provision and a separate   practise. Children will know all times tables by the end of the Spring Term. Use NCETM 2.8, 2.9. and 2.11 for times tables as well   $\times 12$



$\times$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$\mathbf{0}$	0	0	0	0	0	0	0	0	0	0	0	0	0
$\mathbf{1}$	0	$\mathbf{1}$	2	3	4	5	6	7	8	9	10	11	12
$\mathbf{2}$	0	2	4	6	8	10	12	14	16	18	20	22	24
$\mathbf{3}$	0	3	6	9	12	15	18	21	24	27	30	33	36
4	0	4	8	12	16	20	24	28	32	36	40	44	48
5	0	5	10	15	20	25	30	35	40	45	50	55	60
6	0	6	12	18	24	30	36	42	48	54	60	66	72
$\mathbf{7}$	0	7	14	21	28	35	42	49	56	63	70	77	84
$\mathbf{8}$	0	8	16	24	32	40	48	56	64	72	80	88	96
$\mathbf{9}$	0	9	18	27	36	45	54	63	72	81	90	99	108
$\mathbf{1 0}$	0	10	20	30	40	50	60	70	80	90	100	110	120
$\mathbf{1 1}$	0	11	22	33	44	55	66	77	88	99	110	121	132
$\mathbf{1 2}$	0	12	24	36	48	60	72	84	96	108	120	132	144




$\left.\begin{array}{r|r|r|r|r|r|r|r|r|}\hline 1,000 & 2,000 & 3,000 & 4,000 & 5,000 & 6,000 & 7,000 & 8,000 & 9,000 \\ \hline 100 & 200 & 300 & 400 & 500 & 600 & 700 & 800 & 900 \\ \hline 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 \\ \hline 10( & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}\right) \div 10$


10 again and vice versa for division	
Know that $x 5$ is the same as $x$ 10 then dividing by 2	
Know that $\div 5$ is the same as $\div$ 10 then x by 2	
Use place value and known facts to multiply and divide and create extended fact families using known facts	$\begin{aligned} & 120 \div 6 \quad 30 \times 40=1200 \\ & 6 \times 4=240 \quad 60 \times 4=24060 \times 40=2400 \quad 1 / 4 \text { of } 24=6 \quad 1 / 4 \text { of } 240=60 \end{aligned}$
Count in multiples o 10, 25 and 50	

Multiply 2
d by 1d
using the area model (reviewed from Y3)

Cuisenaire
rods can also
be used see
Y3.


$$
\begin{aligned}
7 \times 13 & =7 \times 10+7 \times 3 \\
& =70+21 \\
& =91
\end{aligned}
$$





Multiply 3   d by 1d   using the   area model   (possibly   use formal   method   here as   well - see   Y5)	$\begin{aligned} & 521 \times 3=1,563 \\ & 500 \text { (10) (10) (10) (10) (10) (100) (100) (100) (10) (10) (100) } \\ & \text { (100) (100) } \\ & \begin{aligned} 521 \times 3 & =500 \times 3+20 \times 3+1 \times 3 \\ & =1,500+60+3 \\ & =1,000+500+60+3 \\ & =1,563 \end{aligned} \end{aligned}$	3	500   1, 500   $3=5$   $=1,5$   $=1,0$   $=1,5$	$\begin{array}{r} 20 \\ \hline 60 \\ \hline 3+2 \\ +60 \\ +500 \end{array}$	3 $\times 3+1 \times 3$ $+60+3$
Solve correspond ence problems using multiplicat on facts					
Divide   numbers   using   known   facts and   place value   e.g using	$640 \div 8=80 \quad 6400 \div 8=800 \quad 1 / 8$ of 640   Division is always more difficult than multiplication so spend more time on it. Also link to fractions of an amount wherever possible.				





Divide 3d
by 1d using
concrete
apparatus
and
sharing


Dienes should be used before PV
counters. Show exchanging of tens to
ones. This model shows the groups of
which leads on to short division in Y5.
bivide 3d
partitioning


This should be used as an efficient mental/jotting
strategy and a lead on to formal methods in Y5. If
calculations are too complex then this method
becomes inefficient and short division would be a
more efficient method.



Continuo us   Provision	Times tables 2D shape revision review of cm m mm and lengths and perimeter
Key   Vocabula   ry	Area perimeter side height length width
Key Facts	How to find area and perimeter
Skills and Knowled ge   By the end of the teaching sequence children should...	
Understan d what area is	Review perimeter here
Find an area of a rectilinear shape by counting squares	


Find an area of a rectilinear shape by multiplyin $g$ the sides	
Spring   2	Y4 Fractions
Prior learning	Before starting Y4 objectives review the key concepts from Y3. It is very important that all fraction work is done with concrete apparatus as well as diagrams and images.   Understand unit and non-unit fractions and can represent them as diagrams, shapes, quantities and on a number line   Understand the concept of equal parts and the whole   Understand the language of numerator and denominator   That is the numerator and denominator are the same this makes the whole   That $1 / 2$ means 1 whole divided by $2 \quad 1 / 4$ is a whole divided by 4 etc.   See DfE Ready to Progress and NCETM for Y3 for intervention/gap fill
Continuo us Provision	Times tables and links with times tables and fractions addition and subtraction strategies rounding
Key   Vocabula   ry	Unit fraction non-unit fraction numerator denominator equal whole part Check that children can say, write and spell fractions correctly especially quarters
Key Facts	When comparing unit fractions the greater the denominator the smaller the fraction When comparing non-unit fractions with the same denominator the greater the numerator the greater the fraction. Know that fractions can be equivalent and be able to show this with a diagram/manipulatives

## Apply the knowledge of tenths and hundredths to money and measure

Vocabulary of improper fraction and mixed fraction

## Skills and Examples and models and images to use

## Knowled

By the end of the
teaching
sequence
children
should...

Represent equivalent fractions as images

What fraction is shaded?



NCETM 3.3 step 2.6
$\frac{3}{4}$ or $\frac{6}{8}$









Find the
whole from
the fraction
of quantity
Use the bar modelto find whole amount from the
fraction of the amount. If $3 / 4$ is 150 ml how much is in
numbers bottle


this will	
help wit	
decimal	
equivalents	
later on.	












Covert pence into pounds and pence	How much money is in each purse?   Use real money where can.   There is $\qquad$ pence.   There is $\qquad$ pounds.   There is $£$ $\qquad$ and $\qquad$ p   There is $£$ $\qquad$   Moving on from Y3 money can now be written as decimals	There is $\qquad$ pence.   There is $\qquad$ pounds.   There is $£$ $\qquad$ and p $\qquad$   There is $£$ $\qquad$
Compare and order amounts of money	Use real money and contexts	
Round money to the nearest pound	Place the amounts on the number line and round to the nearest pound.   - £3.67   - $£ 3.21$   - £3.87   - $£ 7.54$   - $£ 7.45$   - 701 p	
Round decimals to the nearest whole number	Use the same strategy as above with the number line - just take away the pound symbol	




Identify and draw triangles	Draw two more sides to create:   - An equilateral triangle   - A scalene triangle   - An isosceles triangle
Identify and draw lines of symmetry in 2D shapes	Using folding, find the lines of symmetry in these shapes.   Use shapes cut up in bits of paper to fold   Complete the shapes according to the line of symmetry.
Classify 2D shapes	



| Skills and <br> Knowledge |  |
| :--- | :--- | :--- |
| By the end of |  |
| the teaching |  |
| sequence |  |
| children |  |
| should... |  |


| Key <br> Vocabulary | Key axis bar tally title line graph temperature |
| :--- | :--- | :--- | :--- |
| Key Facts | Chilldren should be able to read, interpret and draw pictograms bar charts and line graphs. They should be taught to look at the key first and |
| assumputions. |  |
| Skills and <br> Knowledge |  |
| By the end of |  |
| the teaching |  |
| sequence |  |
| children |  |
| should... |  |



## Year 5 Progression

Autum Y5 Place Value	
n 1	1
Prior	Roman numerals should be taught as continuous provision not as a discrete lesson   learning   Children should have secure Place Value knowledge to 10,000 including identifying $1 s 10$   plot numbers on a number line. They should also be able to partition numbers to 10,000 ind a variety of ways and round any 4   digit number to the nearest 10,100 and 1000.









1,000s	100s	10s	1s



Autumn 1	Y5 Addition and Subtraction
Notes	Key concepts   Use unitising language such as 5 tens subtract 3 tens equals 2 tens, three hundreds add 4 hundreds equals 7 hundreds. Identifying no work, mental and jottings calculations should be part of continuous provision and once children are secure with written methods always provide calculations that don't need a formal method. Empty box calculations, moving the equals sign and balancing equations should also be part of continuous practise and number talk.   Children should estimate their answer first   Multi step problems should be included including multiplication and division Include problems with money and measure (keep previous year group objectives on the boil) and statistics (this block can be included with addition and subtraction)   ENL strategies should be used with time and can be practised with money and measure as well   Children should be able to adjust calculations to make them easier   Know that addition is commutative and subtraction is not   Be able to use the inverse to check (part whole models)   Vocabulary: sum, total, difference, total, altogether, how many more, how much less
By the end of the teaching sequence children should...	Examples and models and images to use
Add and subtract more than 4 digit numbers using the formal written method	





questions   using ENL		
Convert   units of time   (continuous   provision)		
Read line   graphs and   answers   questions   using ENL		
Accurately   create own   line graph		Link to science


By the end of the teaching sequence children should...	Examples and models and images to use		
Be able to multiply mentally or with jottings by partitioning in a variety of ways (revision of Y4)	See Jo Boaler's work on this.	Method 1 $\begin{aligned} & 25 \times 8=20 \times 8+5 \times 8 \\ & =160+\square=\square \end{aligned}$   Method 3 $\begin{aligned} & 25 \times 8=25 \times 10-25 \times 2 \\ & =\square-\square=\square \end{aligned}$    Mitioigioigioigioit	Method 2 $\begin{aligned} & 25 \times 8=5 \times 5 \times 8 \\ & =5 \times \square=\square \end{aligned}$       00000••••••••••••••••••••    $\begin{aligned} & \frac{\text { Method } 4}{25 \times 8}=50 \times 8 \div 2 \\ & =\square \div \square=\square \end{aligned}$

Can divide
mentally or
with jottings
by
partitioning
a number
(revision of
Y4)
Can multiply
and divide
using known
facts such as
place value,
times tables
doubling
and halving
the factors


$$
\begin{aligned}
& \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \times & \mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} & \mathbf{8} & \mathbf{9} & \mathbf{1 0} & \mathbf{1 1} & \mathbf{1 2} \\
\hline \mathbf{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \mathbf{1} & 0 & \mathbf{1} & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline \mathbf{2} & 0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 \\
\hline \mathbf{3} & 0 & 3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 & 27 & 30 & 33 & 36 \\
\hline \mathbf{4} & 0 & 4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40 & 44 & 48 \\
\hline \mathbf{5} & 0 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 & 55 & 60 \\
\hline 6 & 0 & 6 & 12 & 18 & 24 & 30 & 36 & 42 & 48 & 54 & 60 & 66 & 72 \\
\hline \mathbf{7} & 0 & 7 & 14 & 21 & 28 & 35 & 42 & 49 & 56 & 63 & 70 & 77 & 84 \\
\hline \mathbf{8} & 0 & 8 & 16 & 24 & 32 & 40 & 48 & 56 & 64 & 72 & 80 & 88 & 96 \\
\hline \mathbf{9} & 0 & 9 & 18 & 27 & 36 & 45 & 54 & 63 & 72 & 81 & 90 & 99 & 108 \\
\hline \mathbf{1 0} & 0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 & 110 & 120 \\
\hline \mathbf{1 1} & 0 & 11 & 22 & 33 & 44 & 55 & 66 & 77 & 88 & 99 & 110 & 121 & 132 \\
\hline \mathbf{1 2} & 0 & 12 & 24 & 36 & 48 & 60 & 72 & 84 & 96 & 108 & 120 & 132 & 144 \\
\hline
\end{array} \\
& 0000000000001 \times \square=12 \\
& 000000 \\
& 000000 \\
& \times 6=12 \\
& \square \times \square=
\end{aligned}
$$

Understand
and find
common
factors


Teach children to be
systematic by starting at 1
what a
prime
number is
and re call
prime
numbers to
20


Understand what a composite number is	
Can multiply and divide using factor and multiple knowledge	7,200   $\div 100$   72   36   X 200 same as $\times 100$ and $\times 2 \times 500$ same as $\times 1000$ and dividing by 2   $\div 200$ the same as $\div 100$ then $\div 2$ see above
Create and complete extended multiplicatio n and division facts	Fact triangle $4 \times 6=2440 \times 6=2404 \times 60=2440 \times 60=2400 \quad 24 \div 6=4 \quad 240 \div 6=40 \quad 1 / 4$ of $24=6$ etc.



\section*{| Spring 1 | Y5 Multiplication and Division written methods |
| :--- | :--- |}

Notes: children should be competent with the area model from Y4 so should be an easy step on to 2d by 2d. No larger numbers should be used with the area model as it is not efficient. Unitising language should be used - one ten multiplied by two tens equals two tens as per key concepts.
By the end of the Examples and models and images to use
teaching sequence
children should...



	$\times$		$x$     3 1 2     2 8   2 4 9 6   6 2 4 0   8 7 3 6    1		$\times$	3 1    2 4   1 2 4   6 2 0   7 4 4


Divide 3d by 1d using short division and PV counters NCETM 2.15	84	$\div$	4	=	21	$2 \quad 1$ $4 \lcm{8 \quad 4}$
	dividend	$\div$	divisor	$=$	quotient	quotient   divisor $\longdiv { \text { dividend } }$




Partition decimals and fraction equivalent according PV   $6.24 \quad 6+0.2+$   $0.046+2 / 10+$   4/100   Partition decimals and fraction equivalent a variety of ways 6.2462 tenths and 4 hundredths $6+$ 24/100	
Read and write decimal numbers as numerals and fractions 0.71 71/100   Count in decimals and place decimals to 1 dp on a number line	
Count in decimals and place decimals to 2 dp on a number line Compare decimal numbers to 2 dp Round decimals to the nearest whole on a number line	










teaching sequenc e children should...	
Identify   and   draw 2D   shapes	Draw a regular polygon and an irregular polygon on the grids.
Underst   and   regular   and   irregular   shapes	Sort the shapes in to irregular and regular polygons.   What's the same? What's different?
Identify   and   draw   quadrilat   erals	
Measure   and   calculate   the   perimet   er of rectiline	





## Year 6 Progression

Autumn 1	Y5 Place Value and addition and subtraction strategies	
By the end of the teaching sequence children should...	Examples and models and images to use	Notes
See Y5 Autumn 1 \& 2		Recall facts document should also be used as continuous provision/ assessment to check children are secure on Y5 objectives. Previous CT should have noted any gaps on previous







Use intelligent practice to apply multiplying and dividing by 10,100 and 1000		
Round any number to the nearest 10/ 100/1000/10,000 and 100,000	ENL - word problems - using rounding to estimate   At a festival, 218,712 people attend across the weekend.   Tickets come in batches of 100,000   How many batches should the organisers buy?	Review below when calculating using rounding to estimate
Read, write and order decimals to 3 dp	See Y5 for decimals to 2 dp	Review fractions e.g tenths, hundredths



		review things such as time measure, reading tables and fractions of amount and statistics see Y5
Divide 4d by 2d and interpret remainders as fractions and decimals	Use PV counters. Know that the denominator is the divisor and remainder is the numerator $147 \div 4=36 \mathrm{r} 3$ or 36.75 or 36 and $3 / 4$ and can be solved in a variety of ways e.g mentally/ jottings using table knowledge or with PV counters   4   If know that $3 / 4=0.75$ don't need to use formal method to find decimal equivalent.	Review of FD equivalence



Solve calculations   which involve the 4   operations	$6 \times 4+40 \div 10$ General rule is that you read from left to right because $\mathrm{x} / \div$ and $+/$ - are inverses of each other doesn't   really matter which order which is why the triangle works.   Triangle is more useful than BODMAS although BODMAS easier to remember!   brackets		
Use rounding to   estimate answers		$22,300+5,700$	


Autumn 2	Y6 Fractions	
Notes	Review all of Y5 teaching on fractions	
By the end of the teaching sequence children should...	Examples and models and images to use	Notes
Identify common factors and common multiples including lowest common factor and lowest common multiple.	Teach children to be systematic   Multiples of 6: 6,12, 18, 24   Multiples of 4: $4,8,12,16$, 12 is the LCM of 4 and 6   Factors of $8: 1,2,4,8$   Factors of 12: $1,2,3,4,6,12$   4 is the highest common factor.	Review factors, primes to 100, multiples Square no.s and cube no.s all Y5


Use common factors to simplify fractions	Factors of $8: 1,2,4,8$   Factors of 12: $1,2,3,4,6,12$ 4 is the highest common factor.   Simplify $8 / 12$	
Compare fractions by finding common denominators	When the denominators are the same, the greater the numerator the greater the fraction	Review comparing fractions with common denominator s
Compare fractions by finding common numerato rs	When the numerators are the same, the smaller the denominator the greater the fraction	Review comparing fractions with common numerators
Put fractions on a numberline	Place $\frac{1}{4}, \frac{1}{2}, \frac{1}{8}, \frac{5}{8}, \frac{7}{8}$ and $\frac{3}{16}$ on the number line.	Done across the Key Stage Y5/6 mixed denominator $s$



	$4 \frac{5}{6}+\square=10 \frac{1}{3}$	
Add and subtract 3 sets of fractions including mixed numbers and improper fractions	$\frac{1}{2}-\frac{1}{10}-\frac{1}{5}=\frac{2}{10}$	
Multiply mixed numbers and fractions by whole numbers as repeated addition using visual images to demonstrate understanding	$7 x^{3 / 4}$ means $3 / 47$ times	
Multiply mixed numbers and fractions by whole numbers as part of a number and understand when this is more efficient	$100 \times 3 / 4$ meaning $3 / 4$ of $100=75$	


		$0.2 \times 75=15$ $\frac{1}{5}=\frac{2}{10}$ $\begin{aligned} & \frac{1}{10} \text { of } 75=7.5 \\ & \frac{2}{10} \text { of } 75=15 \end{aligned}$	$\begin{array}{r} 2 \times 75=150 \\ 0.2 \times 75=15 \end{array}$



Spring 1 Y6 Ratio and Proportion

Notes	Children should have an understanding of what percentage is from Y 5 and be able to recall the basic FDP equivalences (1/2 $1 / 4$   $1 / 51 / 10)$ both unit and non-unit.			
By the end   of the   teaching   sequence   children		Examples and models and images to use		
should...			$\quad$	Notes
:---:				


Recall and compare equivalent f ractions, percentages and decimals	$\left.\begin{array}{l} 3 \frac{1}{4} \text { © } 3.4 \\ 3 \frac{1}{4}=3.25 \\ 3.25<3.4 \end{array}\right)$ $\begin{aligned} & 3 \frac{1}{4}<3.4 \\ & 3 \frac{1}{4}=3 \frac{4}{10}=3 \frac{16}{40} \\ & 3 \frac{1}{4}=3 \frac{10}{40} \\ & 3 \frac{10}{40}<3 \frac{16}{40} \end{aligned}$	NCETM   3.10 is a   good   referenc   e point   for this   unit of   work on   FDP.   White   Rose is   also   good for   bar   model   images.



| Understand <br> fractions as <br> divis <br> divion and <br> use this to | $\div 3 / 8=0.375$ | Use |
| :--- | :--- | :--- | :--- |
| calculate | tenths as |  |
| decimal |  | an |
| equivalents | example |  |
| of fractions |  | of how |
|  | this work |  |



	Huge Discount!   All clothes now $50 \%$ off the full price.	
Find \% of an amount	Mo uses a bar model to find $30 \%$ of 220   $10 \%$ of $220=22$, so $30 \%$ of $220=3 \times 22=66$	Review fractions of an amount. Use the image of the bar model which the children are familiar




See ratio as a relationship between 2 values	For every two blue flowers there are $\qquad$ pink flowers. For every blue flower there are $\qquad$ pink flowers.	Use cubes/co unter for concrete resource s. Give children plenty of opportu nity to play with this new concept and talk about the relations hip between the 2 numbers
Use the ratio symbol	The ratio of red counters to blue counters is $\square$ : $\square$   The ratio of blue counters to red counters is $\square$ : $\square$	





Use simple formulae	A rectangle has the are This is expressed throu $=24 \mathrm{~cm}^{2}$.   What could I and w sta				Make   sure   children   are   aware   that they   have   already   used   formulae   for area   and   volume
Generate linear sequences with algebra			$-4$	Output	White   Rose has   good   progressi   on on   this



\[

\]




Spring 2	Y6 Shape, angles and position	
Notes	Geogebra is an excellent website for showing these images and being able to show if one angle changes how the others will too https://www.geogebra.org/?lang=en-GB White Rose is also very good for images and reasoning	
Teaching Points	Examples and models and images to use	Notes
Review angles and turns		Review turns in context of compass points, diving, skating and do turns than are more than one full turn e.g. $1 \frac{1}{4}$ turn Children should be clear on key facts 90 degrees in a right angle 4 right angles =


		360   degrees and a full turn. Using 9 times table
Calculate missing angles on a straight line	$\begin{array}{ll} a+b=\square \\ b+a=\square \\ \square-a=b & a \end{array}$	Link to algebra and part whole models Make sure the straight line isn't always vertical or horizont al
Calculate vertically opposite angles		Children should use their noticing skills to find the best way to calculate missing angels




Draw regular 2d
shapes accurately

Check they can use a protract or
correctly
and a ruler!

Calculate scale factors	Enlargement has not been done in the same ratio for the pink rectangle so is not an enlargement of the green rectangle but the orange is   Enlarge these shapes by:   - Scale factor 2   - Scale factor 3   - Scale factor 4	4 cm   12 cm   16 cm   2 cm	$\begin{aligned} & 2 \mathrm{~cm} \\ & 6 \mathrm{~cm} \\ & 6 \mathrm{~cm} \\ & 2 \mathrm{~cm} \\ & \hline \end{aligned}$	Children should be familiar with the language of scale factor making somethi ng 10 times bigger linking to times tables. Also reviews ratio and gives lots of practise drawing of 2D shapes






Translate and reflect shap es through all 4   quadrants		

