Monday $20^{\text {th }}$ April - Friday $24^{\text {th }}$ April
 Maths New Learning

On Diagnostic Questions, you will have two quizzes: one will be a review, and one will be new learning. The following slides are a guide to help you with the new learning.
Monday $14^{\text {th }}$ is Easter Monday; Tuesday $15^{\text {th }}$ is a Non-Pupil Day.

Monday / Tuesday: Number sequences

Can you spot the pattern?

$9,18, \ldots, 36,45$,

Can you spot the pattern?

Can you spot the pattern?

Can you spot the pattern?

Can you spot the pattern?

$\bullet 10, \ldots, \ldots, 37,46$

Can you spot the pattern?

Can you spot the pattern?

Can you spot the pattern?
$\underbrace{10}_{9}, \underbrace{19}_{9}, \underbrace{28}_{9}, \underbrace{37}_{9}, 46$

Can you spot the pattern?
$\bullet 7,13, \ldots, 25,31$,

Can you spot the pattern?

Can you spot the pattern?

Can you spot the pattern?

Wednesday/Thursday: Missing numbers

What does each shape represent?

What does each shape represent?

$$
\begin{aligned}
& 3+3+3=9 \\
& 3 \times 3=9
\end{aligned}
$$

Amina is making designs with two different shapes.

She gives each shape a value.

Total value is 147

Total value is 111

Calculate the value of each shape.

Amina is making designs with two different shapes.
She gives each shape a value.

Total value is 147

Total value is 111

We can express this algebraically.

$$
\begin{aligned}
& \text { Hexagon }=\mathrm{h} \\
& \text { Cone }=\mathrm{c} \\
& \mathrm{c}+\mathrm{c}+\mathrm{c}+\mathrm{h}+\mathrm{h}=147 \\
& \mathrm{c}+\mathrm{c}+\mathrm{c}+\mathrm{h}=111
\end{aligned}
$$

We can see the difference is one h. $147-111=36$
This means $\mathrm{h}=36$

Calculate the value of each shape.

Friday: Equations

Algebra

- This is algebra: I x w = area It is the formula to find an area of a rectangle.
- So is this: $\square \times 5=15$

Vocabulary

- An algebraic expression has no equals sign e.g.
- $a+b$
- An equation has a equals sign. E.g
- $a+b=5$
- A formula is an equation that gives us instructions on how do something.
- E.g. to find the area of a triangle: area $=(b \times h) \div 2$
- Equations and formula can sometimes be used interchangeably.

Writing algebraic equations

You want to buy 3 bananas.
You can use algebra to express how you are going to work out the cost.
$3 x$ bananas can become...

In algebra there is no need for a x symbol - just the letter next to the number tells us it is a multiplication.
$3 \times 7 p=21 p$

Writing algebraic equations

Now you would like 4 bananas and 5 apples. Can you express this algebraically ?
$4 x$ bananas $+5 x$ apples
$4 b+5 a$
$20 p+45 p=65 p$

What happens when we don't know all the values?

- How many sweets are in this bag??
- We don't know!

- We have to call it ' n ' for aNy number!

SOLVING EQUATIONS

- Solving equations allows us to calculate the number of sweets in each bag!

It can be any letter e.g. b for banana or n of aNy number. Or it can be just an empty box or question mark. In algebra you just use letters to represent numbers or variables.

$$
\mathrm{n}+5 \quad=11
$$

Use the inverse.

$$
11-5=6
$$

To solve the equation, use the inverse operation.

Use the inverse. $10 \div 2=5$
$2 n$
$=\quad 10$
To solve the equation, use the inverse operation.

17			
n	n	n	5

Use the inverse.

$$
17-5=12
$$

$$
12 \div 3=4
$$

$$
3 n+5 \quad=\quad 17
$$

To solve the equation, use the inverse operation.

23					
n	n	n	n	3	

Use the inverse.
$23-3=20$
$20 \div 5=5$
$4 n+3=23$

To solve the equation, use the inverse operation.

