Calculation Methods

Remember: Is this the most efficient method?

Column Addition

Step 1
Layout the calculation

Step 2

The sum of 4 and 6 is
10 , so there are no ones and 1 ten

Step 3

The sum of 5 tens and 9 tens is 14 tens, plus my extra 10 is 15 tens, which is 150 . There are 5 tens and 1 hundred.

23454
 $\begin{array}{r}596 \\ \hline\end{array}$

Step 4
The sum of 4 hundreds 296
$+\quad 5$ and 5 hundreds, plus my extra 100 is 10 hundreds, which is 1000 . There are no hundreds and 1 thousand.

$$
23454
$$

Step 5
The sum of 3 thousands plus my extra thousand is 4000.

Step 6 and zero is 20,000.

23454 596
$+\quad$
23454

$$
-0-0
$$

24050
111

Column Subtraction

Step 1
Layout the calculation

52344

- 1187

Step 2

The 1's column: Because 7 is greater than 4, exchange a ten for ten 1's. So there are now 3 tens and fourteen 1's.

Step 3

Now, 14 ones subtract 7 ones makes 7 ones - record this

Step 4
The 10's column: Because 8 tens is greater than 3 tens, 52844 exchange a 100 for 10 tens. \square
1187 So there are now 2 hundreds and 13 tens (130).

Step 5

Now, 13 tens subtract 8 tens makes 5 tens record this

Step 6

The 100's column: 2 hundreds subtract 1 hundred makes 100 record this

Column Subtraction

Step 7

The 1000's column:
2 thousands subtract 1 thousand makes one thousand - record this

11
52314
$-\quad 1187$

Step 8

The 10,000's column:
There are only five 10,000 's with nothing to subtract - record this

$2^{13} 1$
$523 / 44$
$-\quad 1187$
51157

Short Multiplication

Step 2
Multiply the ones digit by the multiplier - 7 x $9=63.1$ have 3 ones and 6 tens.

Step 3

Multiply the tens digit by the multiplier $-10 \times 9=$ 90 , plus my 6 tens $=150$.

	2	1	7
x			9
	5	3	
		6	

Step 4

Multiply the hundreds digit by the multiplier $200 \times 9=1800$, plus my 1 hundred = 1900. I have 1 thousand and 9 hundreds.

Long Multiplication

Step 1

Layout the calculation

(3425 x 7)
(3425 x 40)

Step 2

Multiply the ones digit by the ones multiplier. $5 \times 7=$ 35. I have 5 ones and 3 tens.

Step 3

Multiply the tens digit by the ones multiplier. $20 \times 7=$ 140, plus my 3 tens $=170$. I have 1 hundred and 7 tens.

Step 4

Multiply the hundreds digit by the ones multiplier. $400 \times 7=2800$, plus my 1 hundred

3425
$\times \quad 47$
2973

$=2900$. I have 2
thousands and 9
hundreds.

Long Multiplication

Step 5

Multiply the thousands digit by the ones multiplier. $3000 \times 7=21,000$,

3425
$\times \quad 47$
2075

$23_{2} 9_{1} 7_{3} 5(3425 \times 7)$ $0(3425 \times 40)$ plus the 2 thousands $=23,000$.

Step 6

Multiply the ones digit by the tens multiplier. $5 \times 40=$ 200. I have 0 ones, 0
 tens and 2 hundreds.

Step 7

Multiply the tens
digit by the tens multiplier. $20 \times 40=$ 800 , plus the 2 hundreds = 1000. I have 0 hundreds and 1 thousand.

Step 8

Multiply the hundreds digit by the tens multiplier. $400 \times 40=16,000$, plus the 1 thousand
$=17,000$. I have 7

	3	4	2	5
x			4	7
2	3_{2}	9_{1}	7_{3}	5
1	7_{z}	0_{z}	0	0

ten thousand.

Long Multiplication

Step 9

Multiply the thousands digit by the tens
multiplier. 3000 x
$40=120,000$,
plus the 10,000
$=130,000$. 1
have 3 ten
thousands and 1
hundred
thousand.

Step 10

 Now, add both of the partial answers together to get your final answer.
Short Division

Step 1

Layout the calculation. Place the dividend (number you're dividing) inside the grid and the divisor (number you're dividing it by) on the outside.

Step 2

How many groups of 3 thousands are there in 7 thousands? There are 2 groups with 1 group remaining.

Step 3

How many groups of 3 hundreds are there in 1800? There are 6 groups.

Step 4

How many groups of 3 tens are there in 4 tens? There is
1 group with 1
group remaining.

Short Division

Step 5

How many groups of 3 ones are there in 16 ones? There are 5 groups with 1 group remaining.

When you reach the last digit, any
remainders are written after with an ' r '.

